1. Pendahuluan[kembali]
Komparator inverting adalah rangkaian elektronik yang memanfaatkan konfigurasi inverting dari sebuah operational amplifier (Op-Amp) untuk membandingkan dua sinyal tegangan. Rangkaian ini memiliki karakteristik unik dimana output akan berlawanan polaritas dengan input yang lebih besar.
Berikut beberapa poin kunci tentang komparator inverting:
- Prinsip Kerja: Tegangan input (Vin) terhubung ke input inverting (-) dari Op-Amp, sedangkan tegangan referensi (Vref) terhubung ke input non-inverting (+). Op-Amp kemudian akan membandingkan besarnya Vin dengan Vref.
- Output: Jika Vin lebih besar dari Vref, output Op-Amp akan jenuh pada level tegangan positif (Vsat). Sebaliknya, jika Vin lebih kecil dari Vref, output Op-Amp akan jenuh pada level tegangan negatif (-Vsat). Dengan kata lain, output berlawanan tanda dengan input yang lebih dominan.
- Kegunaan: Komparator inverting umum digunakan dalam berbagai aplikasi seperti konverter analog ke digital (ADC), rangkaian pencatu daya dengan pengaturan tegangan, serta sistem kontrol digital.
2. Tujuan[kembali]
- Mengetahui dan memahami apa yang dimaksud dengan Komparator Inverting Vref = 0 V
- Memahami rangkaian Komparator Inverting Vref = 0 V
- Dapat mensimulasikan rangkaian Komparator Inverting Vref = 0 V
- Dapat memahami rangkaian aplikasi komparator inverting Vref = 0 V
3. Alat dan Bahan[kembali]
A. Alat
- Baterai
Baterai adalah perangkat yang terdiri dari satu atau lebih sel elektrokimia dengan koneksi eksternal yang digunakan untuk memberi daya pada perangkat listrik (sumber energi listrik).
Baterai (Battery) adalah sebuah alat yang dapat mengubah energi kimia yang disimpannya menjadi energi Listrik yang dapat digunakan oleh suatu perangkat Elektronik.
Spesifikasi dan Pinout Baterai
Input voltage: ac 100~240v / dc 10~30v
Output voltage: dc 1~35v
Max. Input current: dc 14a
Charging current: 0.1~10a
Discharging current: 0.1~1.0a
Balance current: 1.5a/cell max
Max. Discharging power: 15w
Max. Charging power: ac 100w / dc 250w
Jenis batre yg didukung: life, lilon, lipo 1~6s, lihv 1-6s, pb 1-12s, nimh, cd 1-16s
Ukuran: 126x115x49mm
Berat: 460gr
- Resistor
Resistor merupakan salah satu komponen yang digunakan dalam sebuah sirkuit atau rangkaian elektronik. Resistor berfungsi sebagai resistansi/ hambatan yang mampu mengatur atau mengendalikan tegangan dan arus listrik rangkaian. - Dinamo
Dinamo digunakan sebagai sumber AC. - Operational Amplifier
Operational Amplifier atau yang lebih sering disebut op amp merupakan suatu komponen elektronika analog yang berfungsi sebagai penguat atau amplifier multiguna yang diwujudkan dalam sebuah IC op-amp.
Dalam sistem elektronika ground berarti sebuah titik referensi umum atau tegangan potensial sama dengan “tegangan nol”. Ground bersifat relatif, karena dapat memilih titik dimana saja dalam sirkuit untuk dijadikan ground untuk mereferensi semua tegangan dalam rangkaian.
5. Dioda IN4002
Spesifikasi :
6. Transistor BC547
Spesifikasi
- Type - NPN
- Collector-Emitter Voltage: 35 V
- Collector-Base Voltage: 35 V
- Emitter-Base Voltage: 5 V
- Collector Current: 2.5 A
- Collector Dissipation - 10 W
- DC Current Gain (hfe) - 100 to 200
- Transition Frequency - 160 MHz
- Operating and Storage Junction Temperature Range -55 to +150 °C
- Package - TO-126
Konfigurasi Transistor:
Konfigurasi Common Base adalah konfigurasi yang kaki Basis-nya di-ground-kan dan digunakan bersama untuk INPUT maupun OUTPUT. Pada Konfigurasi Common Base, sinyal INPUT dimasukan ke Emitor dan sinyal OUTPUT-nya diambil dari Kolektor, sedangkan kaki Basis-nya di-ground-kan. Oleh karena itu, Common Base juga sering disebut dengan istilah “Grounded Base”. Konfigurasi Common Base ini menghasilkan Penguatan Tegangan antara sinyal INPUT dan sinyal OUTPUT namun tidak menghasilkan penguatan pada arus.
Konfigurasi Common Collector (CC) atau Kolektor Bersama memiliki sifat dan fungsi yang berlawan dengan Common Base (Basis Bersama). Kalau pada Common Base menghasilkan penguatan Tegangan tanpa memperkuat Arus, maka Common Collector ini memiliki fungsi yang dapat menghasilkan Penguatan Arus namun tidak menghasilkan penguatan Tegangan. Pada Konfigurasi Common Collector, Input diumpankan ke Basis Transistor sedangkan Outputnya diperoleh dari Emitor Transistor sedangkan Kolektor-nya di-ground-kan dan digunakan bersama untuk INPUT maupun OUTPUT. Konfigurasi Kolektor bersama (Common Collector) ini sering disebut juga dengan Pengikut Emitor (Emitter Follower) karena tegangan sinyal Output pada Emitor hampir sama dengan tegangan Input Basis.
Konfigurasi Common Emitter (CE) atau Emitor Bersama merupakan Konfigurasi Transistor yang paling sering digunakan, terutama pada penguat yang membutuhkan penguatan Tegangan dan Arus secara bersamaan. Hal ini dikarenakan Konfigurasi Transistor dengan Common Emitter ini menghasilkan penguatan Tegangan dan Arus antara sinyal Input dan sinyal Output. Common Emitter adalah konfigurasi Transistor dimana kaki Emitor Transistor di-ground-kan dan dipergunakan bersama untuk INPUT dan OUTPUT. Pada Konfigurasi Common Emitter ini, sinyal INPUT dimasukan ke Basis dan sinyal OUTPUT-nya diperoleh dari kaki Kolektor.
7. Op-Amp LM741
Operational Amplifier atau lebih dikenal dengan istilah Op-Amp adalah salah satu dari bentuk IC Linear yang berfungsi sebagai Penguat Sinyal listrik. Sebuah Op-Amp terdiri dari beberapa Transistor, Dioda, Resistor dan Kapasitor yang terinterkoneksi dan terintegrasi sehingga memungkinkannya untuk menghasilkan Gain (penguatan) yang tinggi pada rentang frekuensi yang luas. Dalam bahasa Indonesia, Op-Amp atau Operational Amplifier sering disebut juga dengan Penguat Operasional.
Konfigurasi UA741
Komponen Input
1. PIR Sensor
Sensor PIR atau Passive Infra Red adalah sensor yang digunakan untuk mendeteksi adanya pancaran sinar infra merah dari suatu objek. Sensor PIR bersifat pasif, yang berarti sensor ini tidak memancarkan sinar infra merah melainkan hanya dapat menerima radiasi sinar infra merah dari luar. Sensor PIR dapat mendeteksi radiasi dari berbagai objek dan karena semua objek memancarkan energi radiasi, sebagai contoh ketika terdeteksi sebuah gerakan dari sumber infra merah dengan suhu tertentu yaitu manusia mencoba melewati sumber infra merah yang lain misal dinding, maka sensor akan membandingkan pancaran infra merah yang diterima setiap satuan waktu, sehingga jika ada pergerakan maka akan terjadi perubahan pembacaan pada sensor.
Pin out
Spesifikasi
- Vin : dc 5v 9v.
- Radius : 180 derajat.
- Jarak deteksi : 5 7 meter.
- Output : digital ttl.
- Memiliki setting sensitivitas.
- Memiliki setting time delay.
- Dimensi : 3,2 cm x 2,4 cm x 2,3 cm.
- Berat : 10 gr.
Grafik Sensor PIR
Touch Sensor atau Sensor Sentuh adalah sensor elektronik yang dapat mendeteksi sentuhan. Sensor Sentuh ini pada dasarnya beroperasi sebagai sakelar apabila disentuh, seperti sakelar pada lampu, layar sentuh ponsel dan lain sebagainya.
Sound sensor adalah sensor yang berfungsi mendeteksi suara. Module ini bekerja berdasarkan prinsip kekuatan gelombang suara yang masuk. Di mana gelombang suara tersebut mengenai membran sensor, yang berefek pada bergetarnya membran sensor. Dan pada membran tersebut terdapat kumparan kecil yang dapat menghasilkan besaran listrik.
Grafik Sensor Suara |
Lampu LED atau kepanjangannya Light Emitting Diode adalah suatu lampu indikator dalam perangkat elektronika yang biasanya memiliki fungsi untuk menunjukkan status dari perangkat elektronika tersebut.
- Infra merah : 1,6 V.
- Merah : 1,8 V – 2,1 V.
- Oranye : 2,2 V.
- Kuning : 2,4 V.
- Hijau : 2,6 V.
- Biru : 3,0 V – 3,5 V.
- Putih : 3,0 – 3,6 V.
- Ultraviolet : 3,5 V.
2. Relay
Berdasarkan gambar diatas, sebuah Besi (Iron Core) yang dililit oleh sebuah kumparan Coil yang berfungsi untuk mengendalikan Besi tersebut. Apabila Kumparan Coil diberikan arus listrik, maka akan timbul gaya Elektromagnet yang kemudian menarik Armature untuk berpindah dari Posisi sebelumnya (NC) ke posisi baru (NO) sehingga menjadi Saklar yang dapat menghantarkan arus listrik di posisi barunya (NO). Posisi dimana Armature tersebut berada sebelumnya (NC) akan menjadi OPEN atau tidak terhubung. Pada saat tidak dialiri arus listrik, Armature akan kembali lagi ke posisi Awal (NC). Coil yang digunakan oleh Relay untuk menarik Contact Poin ke Posisi Close pada umumnya hanya membutuhkan arus listrik yang relatif kecil.
Kontak Poin (Contact Point) Relay terdiri dari 2 jenis yaitu :
- Normally Close (NC) yaitu kondisi awal sebelum diaktifkan akan selalu berada di posisi CLOSE (tertutup)
- Normally Open (NO) yaitu kondisi awal sebelum diaktifkan akan selalu berada di posisi OPEN (terbuka)
3. Motor DC
Buzzer adalah sebuah komponen elektronika yang dapat mengubah sinyal listrik menjadi getaran suara. Buzzer ini biasa dipakai pada sistem alarm. Juga bisa digunakan sebagai indikasi suara. Buzzer adalah komponen elektronika yang tergolong tranduser. Sederhananya buzzer mempunyai 2 buah kaki yaitu positif dan negatif. Untuk menggunakannya secara sederhana kita bisa memberi tegangan positif dan negatif 3 - 12V.
4. Dasar Teori[kembali]
- Dengan Vref = 0Volt
Rangkaian komparator inverting dengan tegangan input Vi berupa gelombang segitiga dan tegangan referensi Vref = 0 Volt adalah seperti gambar 88.
Untuk menghitung berapa tegangan ambang VUT(Upper Threshold Voltage) atau VLT(Lower Threshold Voltage) maka lakukan pemisalan kondisi tegangan output Vo = +Vsat atau –Vsat. Misalkan tegangan output Vo = +Vsat seperti gambar 89 maka dapat dihitung tegangan ambang atas VUT:
Misalkan tegangan output Vo = -Vsat seperti gambar 90 maka dapat dihitung tegangan ambang bawah VLT:
Bentuk gelombang tegangan output VO adalah seperti pada gambar 91 dan karakteristik I-O seperti pada gambar 92. - Dengan Vref ≠ 0Volt
Rangkaian komparator inverting dengan tegangan input Vi berupa gelombang segitiga dan tegangan referensi Vref ≠ 0 Volt adalah seperti gambar 93.
Misalkan tegangan output Vo = +Vsat seperti gambar 94 maka dapat dihitung tegangan ambang atas VUT:
Misalkan tegangan output Vo = -Vsat seperti gambar 95 maka dapat dihitung tegangan ambang bawah VLT:
Bentuk gelombang tegangan output Vo adalah seperti pada gambar 96 dan gambar 97 dan karakteristik I-O seperti pada gambar 98 dan gambar 99. - sensor pir
![](https://upload.wikimedia.org/wikipedia/commons/1/1b/How_PIR_Sensor_Device_Detects_Human_Presence.gif)
Transistor adalah sebuah komponen di dalam elektronika yang diciptakan dari bahan-bahan semikonduktor dan memiliki tiga buah kaki. Masing-masing kaki disebut sebagai basis, kolektor, dan emitor.
1. Emitor (E) memiliki fungsi untuk menghasilkan elektron atau muatan negatif.
2. Kolektor (C) berperan sebagai saluran bagi muatan negatif untuk keluar dari dalam transistor.
Berfungsi sebagai penguat, sebagai sirkuit pemutus dan penyambung arus (switching), stabilisasi tegangan, dan modulasi sinyal. Selain itu, transistor biasanya juga dapat digunakan sebagai saklar dalam rangkaian elektronika. Jika ada arus yang cukup besar di kaki basis, transistor akan mencapai titik jenuh. Pada titik jenuh ini transistor mengalirkan arus secara maksimum dari kolektor ke emitor sehingga transistor seolah-olah short pada hubungan kolektor-emitor. Jika arus base sangat kecil maka kolektor dan emitor bagaikan saklar yang terbuka. Pada kondisi ini transistor dalam keadaan cut off sehingga tidak ada arus dari kolektor ke emitor.
Spesifikasi :
- Bi-Polar Transistor
- DC Current Gain (hFE) is 800 maximum
- Continuous Collector current (IC) is 100mA
- Emitter Base Voltage (VBE) is > 0.6V
- Base Current(IB) is 5mA maximum
- Detektor Penyilang Nol: mendeteksi tegangan-tegangan di atas nol
- Detektor Taraf Tegangan (positif dan negatif): mendeteksi tegangan-tegangan acuan pada tegangan positif maupun negatif yang sudah kita tentukan.
- Penguat (Buffer): memperkuat amplitudo pada pulsa output nya.
- Penguat 2 Tingkat: seperti rangkaian Buffer, tetapi mengalami 2 kali penguatan.
- Pembangkit Isyarat: untuk membangkitkan pulsa
- Rangkaian Diverensial: untuk pengukuran pengendalian instrumentasi dan penguat sinyal-sinyal yang sangat lemah.
- Rangkaian Instrumentasi: untuk memperbaiki penguat differensial.
f. Resistor
Resistor atau hambatan adalah salah satu komponen elektronika yang memiliki nilai hambatan tertentu, dimana hambatan ini akan menghambat arus listrik yang mengalir melaluinya. Sebuah resistor biasanya terbuat dari bahan campuran Carbon. Namun tidak sedikit juga resistor yang terbuat dari kawat nikrom, sebuah kawat yang memiliki resistansi yang cukup tinggi dan tahan pada arus kuat. Contoh lain penggunaan kawat nikrom dapat dilihat pada elemen pemanas setrika. Jika elemen pemanas tersebut dibuka, maka terdapat seutas kawat spiral yang biasa disebut dengan kawat nikrom.
Satuan Resistor adalah Ohm (simbol: Ω) yang merupakan satuan SI untuk resistansi listrik. Dalam sejarah, kata ohm itu diambil dari nama salah seorang fisikawan hebat asal German bernama George Simon Ohm. Beliau juga yang mencetuskan keberadaan hukum ohm yang masih berlaku hingga sekarang.
Resistor berfungsi sebagai penghambat arus listrik. Jika ditinjau secara mikroskopik, unsur-unsur penyusun resistor memiliki sedikit sekali elektron bebas. Akibatnya pergerakan elektronya menjadi sangat lambat. Sehingga arus yang terukur pada multimeter akan menunjukan angka yang lebih rendah jika dibandingkan rangkaian listrik tanpa resistor.
Satuan Resistor adalah Ohm (simbol: Ω) yang merupakan satuan SI untuk resistansi listrik. Dalam sejarah, kata ohm itu diambil dari nama salah seorang fisikawan hebat asal German bernama George Simon Ohm. Beliau juga yang mencetuskan keberadaan hukum ohm yang masih berlaku hingga sekarang.
Resistor berfungsi sebagai penghambat arus listrik. Jika ditinjau secara mikroskopik, unsur-unsur penyusun resistor memiliki sedikit sekali elektron bebas. Akibatnya pergerakan elektronya menjadi sangat lambat. Sehingga arus yang terukur pada multimeter akan menunjukan angka yang lebih rendah jika dibandingkan rangkaian listrik tanpa resistor.
Cara menghitung nilai resistansi resistor dengan gelang warna:
1. Masukkan angka langsung dari kode warna gelang pertama.
2. Masukkan angka langsung dari kode warna gelang kedua.
3. Masukkan angka langsung dari kode warna gleang ketiga.
4. Masukkan jumlah nol dari kode warna gelang ke-4 atau pangkatkan angka tersebut dengan 10 (10^n), ini merupakan nilai toleransi dari resistor.
Resistor mempunyai nilai resistansi (tahanan) tertentu yang dapat memproduksi tegangan listrik di antara kedua pin dimana nilai tegangan terhadap resistansi tersebut berbanding lurus dengan arus yang mengalir, berdasarkan persamaan Hukum OHM :
Dimana V adalah tegangan, I adalah kuat arus, dan R adalah Hambatan
- Untuk alat sensor panas, misalnya dalam amplifier.
- Sebagai sekering(saklar) atau pengaman
- Untuk rangkaian clamper dapat memberikan tambahan partikel DC untuk sinyal AC.
- Untuk menstabilkan tegangan pada voltage regulator
- Untuk penyearah
- Untuk indikator
- Untuk alat menggandakan tegangan.
- Untuk alat sensor cahaya, biasanya menggunakan dioda photo.
Dioda dapat dibagi menjadi beberapa jenis:
Untuk menentukan arus zenner berlaku persamaan:
Sensor Kapasitif
Sensor sentuh Kapasitif merupakan sensor sentuh yang sangat populer pada saat ini, hal ini dikarenakan Sensor Kapasitif lebih kuat, tahan lama dan mudah digunakan serta harga yang relatif lebih murah dari sensor resistif. Ponsel-ponsel pintar saat ini telah banyak yang menggunakan teknologi ini karena juga menghasilkan respon yang lebih akurat.
Berbeda dengan Sensor Resistif yang menggunakan tekanan tertentu untuk merasakan perubahan pada permukaan layar, Sensor Kapasitif memanfaatkan sifat konduktif alami pada tubuh manusia untuk mendeteksi perubahan layar sentuhnya. Layar sentuh sensor kapasitif ini terbuat dari bahan konduktif (biasanya Indium Tin Oxide atau disingkat dengan ITO) yang dilapisi oleh kaca tipis dan hanya bisa disentuh oleh jari manusia atau stylus khusus ataupun sarung khusus yang memiliki sifat konduktif.
Pada saat jari menyentuh layar, akan terjadi perubahaan medan listrik pada layar sentuh tersebut dan kemudian di respon oleh processor untuk membaca pergerakan jari tangan tersebut. Jadi perlu diperhatikan bahwa sentuhan kita tidak akan di respon oleh layar sensor kapasitif ini apabila kita menggunakan bahan-bahan non-konduktif sebagai perantara jari tangan dan layar sentuh tersebut.
Sensor sentuh Kapasitif merupakan sensor sentuh yang sangat populer pada saat ini, hal ini dikarenakan Sensor Kapasitif lebih kuat, tahan lama dan mudah digunakan serta harga yang relatif lebih murah dari sensor resistif. Ponsel-ponsel pintar saat ini telah banyak yang menggunakan teknologi ini karena juga menghasilkan respon yang lebih akurat.
Berbeda dengan Sensor Resistif yang menggunakan tekanan tertentu untuk merasakan perubahan pada permukaan layar, Sensor Kapasitif memanfaatkan sifat konduktif alami pada tubuh manusia untuk mendeteksi perubahan layar sentuhnya. Layar sentuh sensor kapasitif ini terbuat dari bahan konduktif (biasanya Indium Tin Oxide atau disingkat dengan ITO) yang dilapisi oleh kaca tipis dan hanya bisa disentuh oleh jari manusia atau stylus khusus ataupun sarung khusus yang memiliki sifat konduktif.
Pada saat jari menyentuh layar, akan terjadi perubahaan medan listrik pada layar sentuh tersebut dan kemudian di respon oleh processor untuk membaca pergerakan jari tangan tersebut. Jadi perlu diperhatikan bahwa sentuhan kita tidak akan di respon oleh layar sensor kapasitif ini apabila kita menggunakan bahan-bahan non-konduktif sebagai perantara jari tangan dan layar sentuh tersebut.
Sensor Resistif
Tidak seperti sensor sentuh kapasitif, sensor sentuh resistif ini tidak tergantung pada sifat listrik yang terjadi pada konduktivitas pelat logam. Sensor Resistif bekerja dengan mengukur tekanan yang diberikan pada permukaannya. Karena tidak perlu mengukur perbedaan kapasitansi, sensor sentuh resistif ini dapat beroperasi pada bahan non-konduktif seperti pena, stylus atau jari di dalam sarung tangan.
Sensor sentuh resistif terdiri dari dua lapisan konduktif yang dipisahkan oleh jarak atau celah yang sangat kecil. Dua lapisan konduktif (lapisan atas dan lapisan bawah) ini pada dasarnya terbuat dari sebuah film. Film-film umumnya dilapisi oleh Indium Tin Oxide yang merupakan konduktor listrik yang baik dan juga transparan (bening).
Cara kerjanya hampir sama dengan sebuah sakelar, pada saat film lapisan atas mendapatkan tekanan tertentu baik dengan jari maupun stylus, maka film lapisan atas akan bersentuhan dengan film lapisan bawah sehingga menimbulkan aliran listrik pada titik koordinat tertentu layar tersebut dan memberikan signal ke prosesor untuk melakukan proses selanjutnya.
Tidak seperti sensor sentuh kapasitif, sensor sentuh resistif ini tidak tergantung pada sifat listrik yang terjadi pada konduktivitas pelat logam. Sensor Resistif bekerja dengan mengukur tekanan yang diberikan pada permukaannya. Karena tidak perlu mengukur perbedaan kapasitansi, sensor sentuh resistif ini dapat beroperasi pada bahan non-konduktif seperti pena, stylus atau jari di dalam sarung tangan.
Sensor sentuh resistif terdiri dari dua lapisan konduktif yang dipisahkan oleh jarak atau celah yang sangat kecil. Dua lapisan konduktif (lapisan atas dan lapisan bawah) ini pada dasarnya terbuat dari sebuah film. Film-film umumnya dilapisi oleh Indium Tin Oxide yang merupakan konduktor listrik yang baik dan juga transparan (bening).
Cara kerjanya hampir sama dengan sebuah sakelar, pada saat film lapisan atas mendapatkan tekanan tertentu baik dengan jari maupun stylus, maka film lapisan atas akan bersentuhan dengan film lapisan bawah sehingga menimbulkan aliran listrik pada titik koordinat tertentu layar tersebut dan memberikan signal ke prosesor untuk melakukan proses selanjutnya.
5. Percobaan[kembali]
a) Prosedur[kembali]
- Langkah-langkah dalam membuat rangkaian ini, siapkan semua alat dan bahan serta komponen terkait dan aplikasi beserta library proteus.
- Letakkan semua alat dan bahan sesuai dengan posisi dimana alat dan bahan terletak pada aplikasi proteus.
- Tepatkan posisi letak nya dengan gambar rangkaian.
- Selanjutnya, hubungkan semua alat dan bahan menjadi suatu rangkaian yang utuh yang mana kabelnya terhubung antar alat, bahan dan komponen.
- Lalu running modelan rangkaian , jika tidak terjadi error, maka motor akan bergerak yang berarti rangkaian bekerja. Jika tidak, cek kembali kesalahan yang terjadi pada struktur rangkaian.
b) Rangkaian Simulasi dan Prinsip Kerja [kembali]
Vsine akan mengeluarkan gelombang input yang kemudian diteruskan ke kaki inverting op-amp dan terus ke ground. jika tegangan outputnya + maka tegangan upper threshold dapat dihitung, sedangkan tegangan outputnya - maka dapat dihitung tegangan lower threshold
- Aplikasi rangkaian Komparator Inverting dengan V referensi = 0 kenyamanan belajar
Prinsip Kerja:
Pada saat seseorang bersandar pada kursi, maka sensor touch akan medeteksi punggung yang bersandar, yang mengakibatkan sensor berlogika satu lalu sehingga adanya arus yang mengalir dari power supply menuju ke Vcc, kemudian dikeluarkan berupa tegangan melalui kaki Vout kemudian menuju ke Op-Amp di mana di sini Op-Amp sebagai komparator inverting dengan Vref =0 dimana Vout = +Vsat, Vut = R6/(R3 +R6)X Vsat =2000/2500X10,8 = 8,64v. Setelah itu tegangan diumpankan ke R10 menuju kaki base dengan tegangan yang cukup pada base sehingga transistor aktif dengan transistor aktif maka ada arus yang mengalir dari power supply menuju relay menuju kolektor menuju emitor terus ke ground, jenis dari biasnya yaitu fixed bias dengan adanya arus tersebut maka nilai menjadi aktif dengan switch-nya berpindah ke kiri sehingga rangkaian loop menjadi tertutup dengan rangkaian loop tertutup maka arus dapat mengalir yang mengakibatkan kipas angin menyala.
Komentar
Posting Komentar